2016

MATRICULATION EXAMINATION DEPARTMENT OF MYANMAR EXAMINATION

MATHEMATICS Time Allowed: (3) Hours WRITE YOUR ANSWERS IN THE ANSWER BOOKLET.

SECTION (A)

(Answer ALL questions. Choose the correct or the most appropriate answer for each question. Write the letter of the correct or the most appropriate answer.)

				•
1. (1) A function f is defined on the set of real numbers by f: $x \mapsto \frac{3}{x-2}$, $x \ne k$. Then the				
value of	k is			
A. 3	B. 1		D. – 1	
(2) An operation \odot is defined by $x \odot y = \frac{3xy}{x+y}$, then the value of x for which $x \odot 2x = 4$ is				
A 3				E. 2
(3) $x^3 - 3x^2 + kx + 7$ is divided by $(x + 3)$, the remainder is 1. Then $k =$				
A. 16	B. 15	C. – 16	D. – 15	E. 13
(4) If $(x-p)$ is a factor of $4x^3 - (3p+2)x^2 - (p^2-1)x + 3$, then $p =$				
A. $-\frac{1}{2}$	or 3 B. $\frac{1}{2}$ or -3	C. $-1 \text{ or } \frac{3}{2}$	D. 1 or $-\frac{3}{2}$	E. – 1 or $\frac{2}{3}$
(5) In the expansion of $(3 + kx)^9$, the coefficients of x^3 and x^4 are equal. Then $k =$				
A. 1		C. 3		E. – 2
$(6) {}^{n}C_{0} + {}^{n}C_{n-1} =$				
A. 0	B. 1	C. 2	D. n + 1	E. n
(7) The solution set in R for the inequation $(x + 2)^2 > 2x + 7$ is				
	>-3 } B.{x x < 1}		•	E. $\{x \mid x < -3 \text{ or } x > 1\}$
(8) If p th term of an A.P. is q, and the q th term is p, then the common difference is				
A. 0	B. 1	C1	D. 2	E. – 2
(9) Three positive consecutive terms of a G.P. are $x + 1$, $x + 5$ and $2x + 4$. Then $x =$				
A. 2	B. 7	C. 3	D. 4	E. 1
(10) If x, y, $2x$ is an A.P. and 3, 9, y is a G.P., then $x + y =$				
A. 45	B. 54	C. 27	D. 9	E. – 9
(11) $A = \begin{pmatrix} 2 & 0 \\ 1 & 5 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 2 & k \end{pmatrix}$. Then the value of k for which $AB = BA$ is				
A. – 1	B. 1	C. 7	D. – 4	E. 4
(12) Given that A is a 2×2 matrix such that $\begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix} A + \begin{pmatrix} 1 & 1 \\ -3 & -1 \end{pmatrix} A = \begin{pmatrix} 3 & 6 \\ -3 & 9 \end{pmatrix}$, then the				
matrix A	is			,
A. $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	B. $\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$	C. $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	D. $\begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix}$	$\begin{array}{ccc} & \text{E.} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \end{array}$
,	· ,	. ,	\	[P. T. O.

(13) If A is an event such that P(A) = x and P(not A) = y, then $x^3 + y^3 = x^3$

B. 1 + 3xy

C. 3xy - 1

D. 1 - 3xy

E. none of these

(14) In 100 trials, A is an event and the expected frequency of A is 30, then P(A) =

B. $\frac{3}{5}$

C. $\frac{3}{20}$ D. $\frac{1}{30}$

(15) In \odot O, DC // AB and \angle CAB = 20°. Then \angle DAC =

A. 20°

B. 15°

C. 50°

D. 30°

E. 40°

(16) A and B are two points on a circle 3 cm apart. The chord AB is produced to C making BC = 1 cm. Then the length of the tangent from C to the circle is

A. 2 cm

B. 1 cm

C. 3 cm

D. 4 cm

E. 5 cm

(17) In the trapezium ABCD, AB is twice DC and AB // DC. If AC and BD intersect at O, then $\alpha(\Delta AOB)$: $\alpha(\Delta COD)$ =

A. 1:4

B.2:3

C.4:1

D.3:2

E. none of these

(18) If \vec{a} , \vec{b} are non-parallel and non-zero such that $(3x + y) \vec{a} + (y - 3) \vec{b} = \vec{0}$, then $x = \vec{0}$

A. 1

B. - 1

C. 3

D. - 3

E. none of these

(19) If P = (3, 4), R = (8, 2) and O is the origin and $\overrightarrow{OP} = \overrightarrow{OT} - \frac{1}{2} \overrightarrow{OR}$, then the coordinates of the point T is

A.(1,3)

B.(2,4)

C.(7,5)

D. (4, 5)

E. (5, 7)

(20) What is the smallest value of x for which $\tan 3x = -1$?

A. 15°

B. 45°

C. 75°

D. 90°

E. 105°

(21) If A, B, C are the angles of a triangle and $\tan A = 3$ and $\tan B = 2$, then $\tan C =$

A. 1

B. 2

C. 3

D. 4

E. 5

(22) If $\sin 20^{\circ} = p$, then $\sec 70^{\circ} =$

A. p

B. 2p C. – p

D. $\frac{1}{n}$

E. none of these

(23) If $f(x) = 1 - \frac{1}{x}$, then $f'(\frac{1}{2}) =$

A. 2

B. 3

C. 4

D. 5

E. 6

(24) If $V = \frac{4}{3}r^3 - \frac{3}{4}r^2 + r - 5$, then the rate of change of V with respect to r when r = 2 is

A. 6

B. 7

C. 8

D. 9

E. 14

(25) The gradient of normal line to the curve $y = 2\sqrt{x}$ at the point x = 9 is

B. $-\frac{1}{2}$

C. 3

D. - 3

E. 6

SECTION (B)

(Answer ALL questions)

2. The function f is defined, for $x \in \mathbb{R}$, by f(x) = 2x - 3. Find the value of x for which (3 marks) $f(x) = f^{-1}(x).$

(OR) Find the value of k if $4x^7 + 5x^3 - 2kx^2 + 7k - 4$ has a remainder of 12 when divided by

3. The ninth term of an arithmetic progression is 6. Find the sum of the first 17 terms. (3 marks)

(OR)

A geometric progression is such that the sum of the first 3 terms is 0.973 times the sum to (3 marks) infinity. Find the common ratio.

4. Given: ⊙O with AB = AD and AC is a diameter.

Prove: BC = CD.

(3 marks)

- 5. Given that A = B + C, prove that $\tan A \tan B \tan C = \tan A \tan B \tan C$. (3 marks)
- 6. Differentiate $y = \frac{1}{y}$ with respect to x from the first principles. (3 marks)

SECTION (C)

(Answer any SIX questions)

7.(a) Functions f and g are defined by $f(x) = \frac{x}{2-x}$, $x \ne 2$ and g(x) = ax + b. Given that

 $g^{-1}(7) = 3$ and $(g \circ f)(5) = -7$, calculate the value of a and of b. (5 marks)

- (b) A binary operation \odot on R is defined by $x \odot y = x^2 2xy + 2y^2$. Find $(3 \odot 2) \odot 4$. If $(3 \odot k) - (k \odot 1) = k + 1$, find the values of k. (5 marks)
- 8.(a) The cubic polynomial f(x) is such that the coefficient of x^3 is -1 and the roots of the equation f(x) = 0 are 1, 2 and k. Given that f(x) has a remainder of 8 when divided by x - 3, find the value of k and the remainder when f(x) is divided by x + 3. (5 marks)

(b) The expansion of $(3 + 4x)^n$, the coefficients of x^4 and x^5 are in the ratio of 5:16. Find the value of n.

- 9.(a) Find the solution set in R of the inequation $(x 6)^2 > x$ by graphical method and illustrate it on the number line.
 - (b) The third term of an A.P. is 9 and the seventh term is 49. Calculate the thirteenth term. Which term of the progression, if any, is 289?
- 10.(a) The first and second terms of a G.P. are 10 and 11 respectively. Find the least number of terms such that their sum exceeds 8000.
 - (b) The matrices A and B are such that $A = (B^{-1})^2$. Given that $B = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}$, find the value

of the constant k for which $kB^{-1} = 4A + I$, where I is the identity matrix of order 2.

(5 marks)

- 11.(a) Given that $A = \begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix}$, use the inverse matrix of A to solve the simultaneous equations y 4x + 8 = 0, 2y 3x + 1 = 0. (5 marks)
 - (b) Three tennis players A, B, C play each other only once. The probability that A will beat B is $\frac{2}{7}$, that B will beat C is $\frac{1}{3}$ and that C will beat A is $\frac{2}{5}$. Calculate the probability that A wins both games.
- 12.(a) Prove that the opposite angles of a quadrilateral inscribed in a circle are supplementary. (5 marks)
 - (b) ABCD is a parallelogram. Any circle through A and B cuts DA and CB produced at P and Q respectively. Prove that DCQP is cyclic.

 B (5 marks)
- 13.(a) In the figure, AB // CD and $\alpha(\Delta ECD)$: $\alpha(ABDC) = 16:9$.

 Find the numerical value of CD: AB.

 Given that $\alpha(\Delta ECD) = 24 \text{ cm}^2$, calculate $\alpha(\Delta EAB)$.
- (b) The position vectors of the points A, B and C, relative to an origin O, are $2\hat{i} + 3\hat{j}$, $10\hat{i} + 2\hat{j}$ and $\lambda(-\hat{i} + 5\hat{j})$ respectively. Given that $|\overrightarrow{AB}| = |\overrightarrow{AC}|$, show that $\lambda^2 \lambda 2 = 0$ and hence find the two possible vectors \overrightarrow{AC} . (5 marks)
- 14.(a) If $\cot x + \cos x = p$ and $\cot x \cos x = q$, show that $\sqrt{pq} = \cos x \cot x$, where x is acute and hence, prove that $p^2 q^2 = 4\sqrt{pq}$. (5 marks)
 - (b) A man travels 10 km in a direction N 70° E and then 5 km in a direction N 40° E.

 What is his final distance and bearing from his starting point? (5 marks)
- 15.(a) If $y = (3+4x)e^{-2x}$, then prove that $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$. (5 marks)
 - (b) Find the minimum value of the sum of a positive number and its reciprocal.

 (5 marks)