2016

MATRICULATION EXAMINATION DEPARTMENT OF MYANMAR EXAMINATION

MATHEMATICS

Time Allowed: (3) Hours

WRITE YOUR ANSWERS IN THE ANSWER BOOKLET.

SECTION (A)

(Answer	ALL	questions.	Choose	the	correct	or	the	most	appropriate	e answer	for	each
auestion.	Write	the letter o	f the con	rect o	or the me	ost	appr	opriate	answer.)			

questic	on. Write the letter	r of the correct or the	he most approp	riate answer.)	
1. (1)	Functions f and	g are given by f	f(3) = -1 and	g(-1) = 5. Then	$(g \cdot f)^{-1}(5) =$
	A1	B. 5	C. 3		E. 0
(2)	Given that a O b	means "add 4 to	a and multiply	the result by b",	then the value of
	(2 ⊙ 1) ⊙ 3 is				
	A. 55	B. 50	C. 45		E. 30
(3)	If x is a factor of	$x^3 - 4x^2 + 15x + a^2$	2 – 2a, where a	is a constant, ther	n a =
	A. 0 only	B. –2 only	C. 2 only	D. 0 or 2	E. 0 or –2
(4)	If $ax^2 + 3x - 1$ has	as remainder 3a + 3	14 when divided	d by $x - 3$, then a	=
	A. 1			D1	E2
(5)	The coefficient of	f xy ⁴ in the expans	ion of $(x-2y)^5$	is	
	A. 80	B. 40	C10	D32	E80
(6)	The middle term	in the expansion of	$f(x+y)^{2k}$ is		
		k+1) th term C. (k		$(k+3)^{th}$ term	E.(2k+1) th term
(7)	The solution set i	n R for the inequat	$\sin - 4 - 3x^2 \ge$	0 is	
` ,		-			F 4
	A. $\{X \mid X \geq 0\}$	B. $\{ x \mid -2 \le x \le 3 \}$	$\frac{1}{3}$ C. $\{x \mid -\frac{1}{3}\}$	$\leq x \leq 2$ D. R	Ε. φ
(8)	The three angles	of a triangle form	an A.P. If the	largest angle is	twice the smalles
	angle, then the sn	nallest angle is			
	A. 20°	B. 40°	C. 60°	D. 80°	E. 90°
(9)	If $1 + 2 + 2^2 + 2^3$	$+ + 2^n = 1023, 1$	then n is		
	A. 9	B. 10	C. 11	D. 12	E. 18
(10)	For two numbers	a and b, the A.M	between a and	b is 5 and the G.	M between a and l
is 4. If $a > b$, then $a^b =$					
	A. 256	B. 64	C. 16	D. 10 E.	None of these
(11)	Given that $A = \left(\right)$	$\begin{pmatrix} k & 3 \\ -3 & 2 \end{pmatrix}$ and B =	$\begin{pmatrix} 2 & -3 \\ 3 & -4 \end{pmatrix}$ and A	B = BA, then $k =$	
	A4	B. 2	C. 3	D.4 E.	
(12)	If the determinan	t of the matrix $\binom{2x}{x}$	$\begin{pmatrix} x+1 & 2x \\ 3 & 2 \end{pmatrix}$ is -1	2, then $x =$	
	A. 2	B. 3	C. 4	D. 5	E. 6

(13)	The number of po	ssible outcomes for B.32	or tossing five fair of C.18	oins is D.16	E.8	
(14)	Two dice are thro	wn 180 times. The	expected frequenc	y of obtaining	total score 6 is	
	A.60	B.50	C.40	D.30	E.25	
(15)	In a cyclic quadril A.35°	lateral ABCD, ∠A B. 40°	= 25°, ∠B = 60°. ° C.45°	Γhen ∠C – ∠D D.50°	E. 55°	
(16)		the O, PQ is tangent at Q. If PQ = 4cm, gth of the diameter is 6 cm, the length of PR is				
	A. 6 cm D. 3 cm	B. 5 cm E. 2 cm	C. 4 cm	P	<u>a</u>	
(17)	corresponding any	gle bisectors is	iangles is 16: 225	, then the ratio	of the lengths of	
	A. 16:25	B. 4:15	C. 25 : 4	D.6:25	E. 13:25	
(18)	respectively. If M	is the mid-point o	relative to an ori	tion vector of l	M is	
	A. $\vec{p} + \frac{1}{2}\vec{q}$	B. $-p + \frac{1}{2}q$	C. $-\overrightarrow{p} - \frac{1}{2}\overrightarrow{q}$ D.	$\vec{p} - \frac{1}{2}\vec{q}$	E. $\frac{1}{2}$ p+q	
(19)	Given that $\vec{a} = 3$	$\hat{i}+4\hat{j}$. Then the	vector with ma	gnitude 20 ur	nits and in the	
	direction of a is					
	A. 9î+12ĵ	B. 60î+120ĵ	C12 î -16 ĵ	D. 12î+16ĵ	E.21î+28ĵ	
(20)	If $\tan \theta = 2$, $\tan \theta$	$\phi = 1$, then cot (θ	- φ) =			
	A3	B. 3	C. $-\frac{1}{3}$	D. $\frac{1}{3}$	E. 1	
(21)	cos (-45°)=					
	A. $\frac{2}{\sqrt{2}}$	$B\frac{-2}{\sqrt{2}}$.	C. $\frac{\sqrt{2}}{2}$	D. $\frac{-\sqrt{2}}{2}$	E.1	
(22)	In ΔABC, BC : C	CA : AB = 3 : 4 :	$\sqrt{37}$. Then $\angle C =$			
		B. 75°	C. 105°	D. 120°	E. 150°	
(23)	$\lim_{t\to\infty}(\sqrt{t^2+2t+1}-t$) =				
	A. 0	B. 1	C. 2	D. ∞	E. None of these	
(24)		vative of $y = \cos x$		Doory 2	E sim u 2u	
(25)			C. $\sin x + 2x$ curve $y = x^3 - 6x$			
		B. (-1, 5) C	(1, -5) and $(-1, -5)$	5) D. (2, -4)	E. (2, 4) (25 marks)	

SECTION (B)

(Answer ALL questions)

2. A function $f: x \mapsto \frac{b}{x-a}$, $x \ne a$ and a > 0 is such that $(f \circ f)(x) = x$. Show that

$$x^2 - ax - b = 0. ag{3 marks}$$

(OR)

Given that $x^3 - 2x^2 - 3x - 11$ and $x^3 - x^2 - 9$ have the same remainder when divided by x + a, determine the values of a. (3 marks)

- 3. If 29, a b, a + b, 95 is an A.P., find the values of a and b. (3 marks) (OR)
 - In an G.P, the ratio of the sum of the first three terms to the sum to infinity of the G.P is 19:27. Find the common ratio. (3 marks)
- 4. A and B are two points on a circle 3 cm apart. The chord AB is produced to C making BC = 1 cm. Find the length of the tangent from C to the circle. (3 marks)
- 5. If $\cos \theta \sin \theta = \sqrt{2} \sin \theta$, prove that $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$. (3 marks)
- 6. Find the value of a and b for which $\frac{d}{dx} \left[\frac{\sin x}{2 + \cos x} \right] = \frac{3a + b \cos x}{(2 + \cos x)^2}$. (3 marks)

SECTION (C)

(Answer any SIX questions)

- 7. (a) Functions f and g are defined by $f: x \mapsto 2x + 1$ and $g: x \mapsto \frac{2x+5}{3-x}, x \neq 3$. Find the values of x for which $(f \circ g^{-1})(x) = x 4$. (5 marks)
 - (b) Let R be the set of real numbers and a binary operation \odot on R is defined by $x \odot y = xy x y$ for all x, y in R. Show that the operation \odot is commutative. Solve the equation $(2 \odot 3) \odot x = (x \odot x) \odot 5$.
- 8. (a) The expression $ax^3 (a + 3b)x^2 + 2bx + c$ is exactly divisible by $x^2 2x$. When the expression is divided by x 1, the remainder is 8 more than when it is divided by x + 1. Find the values of a, b and c, hence factorize the expression completely.

(5 marks)

- (b) Write down and simplify the first four terms in the binomial expansion of $(1-2x)^7$. Use it to find the value of $(0.98)^7$, correct to four decimal places. (5 marks)
- 9. (a) Use a sketch graph to obtain the solution set of $\frac{15-4x}{4} \le x^2$ and illustrate it on the number line. (5 marks)
 - (b) Find the sum of all two-digit natural numbers which are not divisible by 3.(5 marks)

- 10.(a) Find the sum of $(b+2)+(b^2+5)+(b^3+8)+...$ to 18 terms in terms of b where $b \ne 1.(5 \text{ marks})$
 - (b) Find the inverse of the matrix $M = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$ and investigate whether or not the squares of M and M^{-1} are inverses of each other. (5 marks)
- 11.(a) Find the inverse of the matrix $\begin{pmatrix} 4 & 3 \\ 7 & 6 \end{pmatrix}$, and use it to solve the system of equations 3y + 4x + 7 = 0 and 14x + 12y + 32 = 0. (5 marks)
 - (b) A die is rolled 360 times. Find the expected frequency of a factor of 6 and the expected frequency of a prime number. If all the scores obtained in these 360 trials are added together, what is the expected total score? (5 marks)
- 12. (a) In the figure, QPT is a tangent at P and PD is a diameter.

 If ∠BPT = x, arc DC = arc CB then find

 ∠DPC, ∠CPB and ∠QPC in terms of x.

 (5 marks)
 - (b) Two incongruent circles P and Q intersect at A and D, a line BDC is drawn to cut the circle P at B and circle Q at C, and such that ∠BAC = 90°. Prove that APDQ is cyclic.
 (5 marks)
- 13.(a) A, B, C and D are four points in order on a circle O, so that AB is a diameter and $\angle COD = 90^{\circ}$. If AD produced and BC produced meet at E, prove that $\alpha(\Delta ECD) = \alpha(ABCD)$. (5 marks)
 - (b) The coordinates of points P, Q and R are (1, 2), (7, 3) and (4, 7) respectively. If PQSR is a parallelogram, find the coordinates of S by vector method. If PS and QR meet at T, find the coordinate of T by using vectors. (5 marks)
- 14.(a) Given that $\frac{\cos(\alpha \beta)}{\cos(\alpha + \beta)} = \frac{7}{5}$, prove that $\cos \alpha \cos \beta = 6 \sin \alpha \sin \beta$ and deduce a relationship between $\tan \alpha$ and $\tan \beta$. Given further that $\alpha + \beta = 45^{\circ}$, calculate the value of $\tan \alpha + \tan \beta$.
 - (b) A town P is 25 miles away from the town Q in the direction N 35° E and a town R is 10 miles from Q in the direction N 42° W. Calculate the distance and bearing of P from R.
 (5 marks)
- 15.(a) Find the coordinates of the points on the curve $x^2-y^2 = 3xy-39$ at which the tangents are (i) parallel (ii) perpendicular to the line x + y = 1. (5 marks)
 - (b) Find the stationary points on the curve $y = 27 + 12x + 3x^2 2x^3$ and determine the nature of these points. (5 marks)